加入收藏 | 设为首页 | 会员中心 | 我要投稿 玉林站长网 (https://www.0775zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

解读AI产业:认知AI还未实现,我们仍然正在路上

发布时间:2021-09-26 19:36:32 所属栏目:大数据 来源:互联网
导读:2020 年是一个不平凡的年份。尽管全球遭遇新冠疫情,但是人工智能技术发展和学术研究依旧稳步向前、技术与产业融合也进一步扩大和深入。最新数据显示,2020 年全球人工智能产业规模达 1565 亿美元,增长率 12%,中国人工智能产业规模大约 3100 亿元人民币,
2020 年是一个不平凡的年份。尽管全球遭遇新冠疫情,但是人工智能技术发展和学术研究依旧稳步向前、技术与产业融合也进一步扩大和深入。最新数据显示,2020 年全球人工智能产业规模达 1565 亿美元,增长率 12%,中国人工智能产业规模大约 3100 亿元人民币,同比增长 15%。
11 月 13 日,国家工业信息安全发展研究中心、工信部电子知识产权中心共同发布了《2020 人工智能中国专利技术分析报告》。报告显示,截止 2020 年 10 月,中国人工智能专利申请仍共计达到 69.4 万件,同比增长 56.3 %。新冠疫情加速和促进了 AI 与实际应用的结合、落地以及商业化,特别是在医疗、城市治理、工业、非接触服务、自动驾驶等领域的快速响应。
疫情加速 AI 技术落地
疫情初期,其传播速度是十分惊人的,近距离飞沫传播、接触传播、气溶胶传播严重影响了人们日常生活,在出行和采买都受限的情况下,传统线下零售和运输行业压力倍增。面对这些人类无法解决的难题,人工智能、大数据、5G、无人机链等技术在抗击新冠肺炎疫情中发挥了不可替代的作用,也让各地政府和企业界看到了人工智能技术的实用性和优越性。
2 月 4 日,工信部向人工智能相关学(协)会、联盟、企事业单位发出倡议,各主体应充分发挥人工智能赋能效用,协力抗击新型冠状病毒感染的肺炎疫情。层出不穷的无接触体温检测、无人配送机器人、无人机消毒、人脸识别、轨迹追踪、社交距离监控等技术大显身手,这些原本无人问津的人工智能产品和技术,在这场疫情中担起了“主角”,各企业也纷纷加大了对 AI 技术的研发投入,据《2020 人工智能中国专利技术分析报告》中的数据显示,截至 2020 年 10 月,我国创新主体在疫情防控相关人工智能技术方面申请专利达 3036 件,分布于疫情监测、防控救治、资源调配等领域。
在疫情监测方面,围绕自动测温系统,截至 2020 年 10 月底,百度、清华大学等企业和科研院所共申请专利 244 件,获得授权 41 件。在交通大数据技术领域,百度、国家电网等企业共提出 198 件专利申请,推出疫情地图、疫情跟踪、同乘查询等信息服务系统,有效保障了人群出行及疫情源头的追踪溯源。
在防控救治方面,科大讯飞、百度等企业在智能语音领域共申请专利 301 件。以智能问诊平台、新冠肺炎检测、智能监测为代表的人工智能技术在疫情医疗救治中共申请 470 件专利。
在资源调配方面,疫情期间自动驾驶技术得到了良好应用,如百度 Apollo 于 2 月 10 日宣布对服务疫情的企业免费开放低速微型车套件及自动驾驶云服务,帮助合作伙伴快速开发出消毒车、配送车,驰援疫情防控前线,机器人技术为疫情防控提供了强有力的后勤保障服务,华为、中兴、等企业申请智能机器人专利 207 件。智能机器人技术的应用,极大降低了疫情传播风险。
AI 技术不像汽车、制造业等实体可以独立存在,它要和某个行业或某些产品做结合。疫情爆发之前 AI 都是在积极主动地区拥抱传统行业,比如 AI+ 金融、AI+ 医疗、AI+ 教育等,而在疫情爆发后,有更多的传统行业主动地去寻求 AI 解决方案,希望通过先进的 AI 技术来弥人工能力的短板。
也正是因为此次疫情,才让人们发现自身其实很弱小,有很多缺点可以在机器人上得到补助。同时这些 AI 技术在人们的高期待之下,也交出了一份令人满意的答卷,获得了难得的用户信任。这份信任就是 AI 产品和技术更加普及的基矗
认知 AI 还未实现,我们仍旧在路上
如今,随着相关理论和技术的不断革新,AI 在数据、算力和算法“三要素”的支撑下越来越多地走进我们的日常生活。
但是,这一系列惊喜的背后,却是大多数 AI 在语言理解、视觉场景理解、决策分析等方面的举步维艰:这些技术依然主要集中在感知层面,即用 AI 模拟人类的听觉、视觉等感知能力,却无法解决推理、规划、联想、创作等复杂的认知智能化任务。
当前的 AI 缺少信息进入“大脑”后的加工、理解和思考等,做的只是相对简单的比对和识别,仅仅停留在“感知”阶段,而非“认知”,以感知智能技术为主的 AI 还与人类智能相差甚远。
究其原因在于,AI 正面临着制约其向前发展的瓶颈问题:大规模常识知识库与基于认知的逻辑推理。而基于知识图谱、认知推理、逻辑表达的认知图谱,则被越来越多的国内外学者和产业领袖认为是“目前可以突破这一技术瓶颈的可行解决方案之一”。
清华大学计算机系教授、系副主任,智谱AI 首席科学家唐杰教授表示,当前认知 AI 还没有实现,我们急需做的是一些基础性的东西(AI 的基础设施),比如知识图谱的构建、知识图谱的一些认知逻辑,包括认知的基础设施等。
从 1950 年开始创建人工智能系统,到 1970 年开始深入的让计算机去模仿人脑,再到 1990 年计算机学家意识到计算机是 “参考” 人脑而不是完全的 “模仿”。现在我们更是处于一个计算机的变革时代,我们应该用更多的计算机思维来做计算机的思考,而不是人的思考。现在人们需要思考的是:如何以计算机的方式做认知?唐杰教授谈到,可以结合两种方法去实现。
第一个从大数据的角度上做数据驱动,把所有的数据进行建模,并且学习数据之间的关联关系,学习数据的记忆模型;第二个是要用知识渠道,构建知识图谱。
不过,只这两个方面还是远远不够的。唐杰教授指出:真正的通用人工智能,我们希望它有持续学习的能力,能够从已有的事实、从反馈中学习到新的东西,能够完成一些更加复杂的任务。

(编辑:玉林站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读